table of contents
dsytrs_3.f(3) | LAPACK | dsytrs_3.f(3) |
NAME¶
dsytrs_3.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dsytrs_3 (UPLO, N, NRHS, A,
LDA, E, IPIV, B, LDB, INFO)
DSYTRS_3
Function/Subroutine Documentation¶
subroutine dsytrs_3 (character UPLO, integer N, integer NRHS, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) E, integer, dimension( * ) IPIV, double precision, dimension( ldb, * ) B, integer LDB, integer INFO)¶
DSYTRS_3
Purpose:
DSYTRS_3 solves a system of linear equations A * X = B with a real
symmetric matrix A using the factorization computed
by DSYTRF_RK or DSYTRF_BK:
A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
where U (or L) is unit upper (or lower) triangular matrix,
U**T (or L**T) is the transpose of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is symmetric and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This algorithm is using Level 3 BLAS.
Parameters:
UPLO
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix:
= 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T);
= 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T).
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
Diagonal of the block diagonal matrix D and factors U or L
as computed by DSYTRF_RK and DSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
should be provided on entry in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is DOUBLE PRECISION array, dimension (N)
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
NOTE: For 1-by-1 diagonal block D(k), where
1 <= k <= N, the element E(k) is not referenced in both
UPLO = 'U' or UPLO = 'L' cases.
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF_RK or DSYTRF_BK.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2017
Contributors:
June 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
Definition at line 167 of file dsytrs_3.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |